Synthesis and Characterization of 2,6-Dipp ${ }_{2}-\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{SnSnC}_{6} \mathrm{H}_{3}-2,6-$ Dipp $_{2}$ (Dipp $=$ $\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Pr}^{\mathrm{i}}$): A Tin Analogue of an Alkyne

Andrew D. Phillips, Robert J. Wright, Marilyn M. Olmstead, and Philip P. Power*
Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616

Received January 25, 2002

In 1997 it was reported that reduction of the aryltin(II) halide $\mathrm{Sn}(\mathrm{Cl}) \mathrm{C}_{6} \mathrm{H}_{3}-2,6-$ Trip $_{2}$ (Trip $=\mathrm{C}_{6} \mathrm{H}_{2}-2,4,6-$ Pr $^{\mathrm{i}}{ }_{3}$) by potassium afforded singly reduced valence isomers of distannynes in accordance with eq $1 .{ }^{1}$

$$
\begin{gather*}
2: \mathrm{Sn}(\mathrm{Cl}) \mathrm{Ar}^{*} \xrightarrow{\mathrm{~K}}\left[\mathrm{~K}(\mathrm{THF})_{6}\right][\mathrm{Ar} * \mathrm{SnSnAr} *] \\
\text { or } \tag{1}\\
{\left[\mathrm{K}(18 \text {-crown- } 6)(\mathrm{THF})_{2}\right]\left[\mathrm{Ar}^{*} \mathrm{SnSnAr} *\right] \cdot 2 \mathrm{THF}+2 \mathrm{KCl}} \\
\mathrm{Ar}^{*}=\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Trip}_{2}
\end{gather*}
$$

Subsequently, it was shown that it was possible to induce further reduction by reaction with alkali metal for extended periods to obtain the doubly reduced species $\mathrm{K}_{2} \mathrm{Ar}^{*} \mathrm{SnSnAr}^{*}$ as well as its germanium analogue $\mathrm{Na}_{2} \mathrm{Ar}^{*} \mathrm{GeGeAr}^{*} .{ }^{2}$ The main structural features of the singly and doubly reduced tin products ${ }^{1-3}$ are a strongly trans-bent, planar skeleton and tin-tin bonds that are equal to, or slightly shorter than, the tin-tin distance ($2.80 \AA$) in gray tin 4 or the $2.824 \AA$ calculated for the $\mathrm{Sn}-\mathrm{Sn}$ single bond in $\mathrm{H}_{3} \mathrm{SnSnH}_{3} .{ }^{5}$ Due to the relatively narrow $\mathrm{Sn}-\mathrm{Sn}-\mathrm{C}$ angles in these compounds (See Table 1.), ${ }^{1-3}$ they were viewed as singly (IV) or doubly (V) reduced forms of III which is a singly bonded valence isomer of

the hypothetical triply bonded distannyne I. The double bonding in the twice reduced V is supported by analogy with the isoelectronic neutral group 15 species $R \dot{S} \dot{b}=\dot{S} \dot{b} R .{ }^{6,7}$ Furthermore, EPR spectral data for IV supported the location of the unpaired electron spin density in a π-orbital which results from the overlap of a 5 p orbital from each tin. The multiple $\mathrm{Sn}-\mathrm{Sn}$ bonds in IV and V are not particularly short in comparison to a conventional $\mathrm{Sn}-\mathrm{Sn}$ single bond, ${ }^{4,5}$ but it could be argued that the multiple $\mathrm{Sn}-\mathrm{Sn}$ bonding is partly masked by lengthening of the σ-bond which could have been weakened by the high p -character of the σ-bonding orbitals, and by Coulombic repulsion in the case of the dianion V. It is probable that IV and V are obtained through the reduction of neutral $\mathrm{Ar} * \mathrm{SnSnAr} *$; however, the structure and the degree of multiple bonding in this species has remained undefined experimentally. Such a molecule is of key importance in heavier group 14 element chemistry, where the only precedent is the compound $\mathrm{Ar}^{*} \mathrm{PbPbAr} *{ }^{8}{ }^{8}$ which has a long lead-lead bond of $3.188(1) \AA$ and a $\mathrm{Pb}-\mathrm{Pb}-\mathrm{C}$ angle of $94.26(4)^{\circ}$ consistent with metal-metal single bonding. ${ }^{8,9}$ It is now reported that the use of a modified terphenyl substituent

[^0]Table 1. Selected Bond Distances and Angles for Reduced Ar*SnSnAr* Species and 1

cmpd	$\mathrm{Sn}-\mathrm{Sn}(\mathrm{A})$	Sn-Sn-C (deg)	ref
$\left[\mathrm{K}(\mathrm{THF})_{6}\right]\left[\mathrm{Ar}^{*} \mathrm{SnSnAr}^{*}\right]^{a}$	2.8123(9)	95.20(13)	1
[K(18-crown-6)(THF) ${ }_{2}$][Ar*SnSnAr*]	2.7821(14)	93.6(4),95.0(4)	1
	2.8236(14)	97.3(2)	
[(THF) $\left.{ }_{3} \mathrm{Na}\left\{\mathrm{Ar}^{*} \mathrm{SnSnAr} *\right\}\right]$	2.8107(13)	97.9(3),98.0(4)	3
[$\mathrm{K}_{2} \mathrm{Ar} * \mathrm{SnSnAr} *$]	2.7763(9)	107.50(14)	2
$\mathrm{Ar}^{\prime} \mathrm{SnSnAr}{ }^{(1)}{ }^{\text {b }}$	2.6675(4)	125.24(7)	this work

permits the synthesis and structure of a neutral diorganoditin species of formula $\mathrm{Ar}^{\prime} \operatorname{SnSnAr}{ }^{\prime}\left(\mathbf{1} ; \mathrm{Ar}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Dipp}_{2}\right.$; Dipp $=\mathrm{C}_{6} \mathrm{H}_{3}$ -2,6- $\mathrm{Pr}^{\mathrm{i}}{ }_{2}$), whose structural parameters support the presence of tintin multiple bonding.

The compound 1 was isolated by reaction of $\mathrm{Sn}(\mathrm{Cl}) \mathrm{Ar}^{\prime}$ with a stoichiometric quantity of potassium in benzene at room temperature. ${ }^{10}$ The product was obtained as dark blue-green crystals which were spectroscopically and structurally characterized. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were consistent with the presence of the Ar^{\prime} ligand. However, despite numerous attempts, a ${ }^{119} \mathrm{Sn}$ NMR signal could not be detected. It is probable that the signal is broadened to a sufficient extent to be undetectable directly owing to the large chemical shift anisotropies caused by the tin environment. ${ }^{11}$ The UV-vis spectrum affords two moderately intense absorptions at 410 and 597 nm which may be due to $\pi \rightarrow \pi^{*}$ and $n-\pi^{*}$ transitions. An X-ray structure determination revealed a centrosymmetric molecule (Figure 1) that has trans-bent skeleton, as well as a planar $\mathrm{C}(1) \operatorname{Sn}(1) \operatorname{Sn}(1 \mathrm{~A}) \mathrm{C}(1 \mathrm{~A})$ array as required by symmetry. ${ }^{12}$ The $\mathrm{Sn}-\mathrm{Sn}$ distance is $2.6675(4) \AA$, and the $\operatorname{Sn}(1)-\operatorname{Sn}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ angle is $125.24(7)^{\circ}$. The central aryl ring of the ligand is almost coplanar (torsion angle 3.2°) with the $\mathrm{C}(1) \operatorname{Sn}(1) \operatorname{Sn}(1 \mathrm{~A}) \mathrm{C}(1 \mathrm{~A})$ array. Furthermore, there is an angle of 4.9° between the $\mathrm{Sn}(1)-\mathrm{C}(1)$ bond and the $\mathrm{C}(1) \cdots \mathrm{C}(4)$ vector. The flanking aryl rings are oriented at 82.8° with respect to the central aryl ring. A cyclic voltammogram of $\mathbf{1}$ in THF solution displayed a quasi-reversible reduction at ca. -1.22 V vs SCE. ${ }^{12 \mathrm{~b}}$ An irreversible oxidation was observed at ca. 0.0 V .

The compound 1 is a stable ditin analogue of an alkyne. The $\mathrm{Sn}-\mathrm{Sn}$ distance is shorter, and the $\mathrm{Sn}-\mathrm{Sn}-\mathrm{C}$ angle is considerably wider, than those observed for the reduced compounds in Table 1. The $\mathrm{Sn}-\mathrm{Sn}$ distance is shortened in comparison to that of a normal single bond ${ }^{4,5}$ and close to the $2.659 \AA$ calculated for the hypothetical compound TbtSnSnTbt (Tbt $=\mathrm{C}_{6} \mathrm{H}_{2}-2,4,6$ - $\{\mathrm{CH}-$ $\left.\left.\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{3}\right)$ which has a $\mathrm{Sn}-\mathrm{Sn}-\mathrm{C}$ angle of 122° and a torsion angle of 10.7° between the $\mathrm{C}-\mathrm{Sn}-\mathrm{Sn}$ planes. ${ }^{5}$ Interestingly, calculations for the structurally uncharacterized compound $\mathrm{Ar} * \mathrm{SnSnAr}$ * also yield a trans-bent structure $(\mathrm{Sn}-\mathrm{Sn}-\mathrm{C}=$ $\left.111.0^{\circ}\right) .{ }^{5}$ However, the torsion angle of 54.7° is quite high, and there is a long $\mathrm{Sn}-\mathrm{Sn}$ distance of $2.900 \AA .{ }^{5,13}$ The calculated structure of $\mathrm{Ar}^{*} \mathrm{SnSnAr} *$ and the experimentally determined

Figure 1. Selected bond lengths (\AA) and angles (deg) for $\mathbf{1} . \mathrm{H}$ atoms are not shown. $\mathrm{Sn}(1)-\mathrm{Sn}(1 \mathrm{~A})=2.6675(4), \mathrm{Sn}(1)-\mathrm{C}(1)=2.191(3), \mathrm{C}(1)-$ $\mathrm{C}(2)=1.403(4), \mathrm{C}(1)-\mathrm{C}(6)=1.405(4), \quad \mathrm{Sn}(1 \mathrm{~A})-\operatorname{Sn}(1)-\mathrm{C}(1)=$ 125.24(7), $\mathrm{Sn}(1)-\mathrm{C}(1)-\mathrm{C}(2)=124.9(2), \mathrm{Sn}(1)-\mathrm{C}(1)-\mathrm{C}(6)=115.8(2)$, $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(19)=119.8(2), \mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)=118.6(2), \mathrm{C}(2)-\mathrm{C}(1)-$ $\mathrm{C}(6)=119.3(3)$.
structure of 1 , which differ only in the presence or absence of $p-\operatorname{Pr}^{\mathrm{i}}$ groups on the flanking rings, illustrate the importance of these groups to the stability of the two configurations. It is becoming clear that the $p-\operatorname{Pr}^{i}$ groups play a key role in determining the overall structure of these compounds as well as other terphenyl derivatives. Previous calculations ${ }^{14}$ have shown that they are important in stabilizing the controversial compound $\mathrm{Na}_{2} \mathrm{Ar}^{*} \mathrm{GaGaAr}^{*}$. ${ }^{15}$ In addition, the structures of the lithium derivatives of these ligands, $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{LiC}_{6} \mathrm{H}_{3}-2,6-\mathrm{Trip}_{2}$ (i.e., $\left.\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{LiAr}^{*}\right)$ and $\left(\mathrm{LiC}_{6} \mathrm{H}_{3}-2,6-\mathrm{Dipp}_{2}\right)_{2}$ (i.e., $\left.\left(\mathrm{LiAr}^{\prime}\right)_{2}\right)$, show that the absence of the $p-\mathrm{Pr}^{\mathrm{i}}$ groups decreases steric congestion sufficiently to allow dimerization to occur. ${ }^{10 \mathrm{c}}$ The $\mathrm{Sn}-\mathrm{C}(1)$ distance, $2.191(3) \AA$ in $\mathbf{1}$, is marginally shorter than the divalent tin carbon distance $(2.227(2) \AA)$ in $\mathrm{Ar}^{*}(\mathrm{Me})_{2} \mathrm{SnSnAr}^{*} .{ }^{16}$ This, together with the near coplanarity of the central aryl ring and the $\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{Sn}(1 \mathrm{~A})$ array, suggests the possibility of conjugation. However, the different $\mathrm{C}-\mathrm{Sn}-\mathrm{Sn}$ angles at tin, which may indicate changes in σ-bonding, makes it difficult to draw conclusions from the structural data.

Although the hypothetical species $\mathrm{Ar}^{*} \mathrm{SnSnAr} *$ and TbtSnSnTbt have been described as distannynes, ${ }^{5}$ this name is misleading in respect of the bond order. The $\mathrm{Sn}-\mathrm{Sn}$ distances calculated for TbtSnSnTbt, and observed in 1, are clearly shorter than single bonds, but they are not as short ${ }^{17}$ as the $\mathrm{Sn}-\mathrm{Sn}$ double bond $(2.59(1) \AA)$ in the cyclotristannene $\left(\mathrm{Bu}_{3}{ }^{\mathrm{t}} \mathrm{Si}\right){ }_{2} \mathrm{SnSn}\left(\mathrm{SiBu}^{\mathrm{t}}\right) \mathrm{Sn}\left(\mathrm{SiBu}_{3}{ }^{\mathrm{t}}\right)$ where, possibly, the geometric constraints of the three-membered ring favor alignment of the tin p-orbitals to afford more efficient π-overlap. ${ }^{18}$ They are similar to the $\mathrm{Sn}-\mathrm{Sn}$ multiple bonds in the tristannaallene $\operatorname{Sn}\left\{\operatorname{Sn}\left(\mathrm{SiBu}_{3}\right)_{2}\right\}_{2}(\mathrm{Sn}-\mathrm{Sn}=2.68(1) \AA)^{17}$ and ca. $0.1 \AA$ shorter than the $\mathrm{Sn}-\mathrm{Sn}$ distance $2.768(1) \AA$ in the compound $\mathrm{R}_{2} \mathrm{SnSnR}_{2}\left(\mathrm{R}=\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$ which is the shortest, currently known $\mathrm{Sn}-\mathrm{Sn}$ bond in a "distannene". ${ }^{19}$ Furthermore, the trans-bent geometry is indicative of lone pair character at each tin. The bonding in $\mathbf{1}$ thus approximates to II and lies between the extremes of the hypothetical linear triply bonded I and the singly bonded III.

Acknowledgment. We are grateful to the National Science Foundation (CHE-0094913) for generous financial support. The

Bruker SMART 1000 diffractometer was funded in part by NSF Instrumentation Grant CHE-9808259. We thank Professor Frank Osterloh for his essential help in recording the electrochemical data.

Supporting Information Available: Tables of data collection parameters, atom coordinates, bond distances, angles, anisotropic thermal parameters, and hydrogen coordinates (PDF). An X-ray crystallographic file (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Olmstead, M. M.; Simons, R. S.; Power, P. P. J. Am. Chem. Soc. 1997, 119, 11705-11706.
(2) Pu, L.; Senge, M. O.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1998, 120, 12682-12683.
(3) Pu, L.; Haubrich, S. T.; Power, P. P. J. Organomet. Chem. 1999, 582, 100.
(4) Wells, A. F. Structural Inorganic Chemistry, 5th ed.; Clarendon: Oxford, 1984; p 1279.
(5) Takagi, N.; Nagase, S. Organometallics 2001, 20, 5498-5500.
(6) Tokitoh, N.; Arai, Y.; Sasamori, T.; Okazaki, R.; Nagase, S.; Uekusa, H.; Oshashi, Y. J. Am. Chem. Soc. 1998, 120, 433-434.
(7) Twamley, B.; Sofield, C. D.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1999, 121, 3357-3367.
(8) Pu, L.; Twamley, B.; Power, P. P. J. Am. Chem. Soc. 2000, 122, 3524.
(9) The structure of $\mathrm{Ar}^{*} \mathrm{PbPbAr}^{* 8}$ and calculations on a model species indicate that the $\mathrm{Pb}-\mathrm{Pb}$ bonding is single. See: Chen, Y.; Hartmann, M.; Diedenhofen, M.; Frenking, G. Angew. Chem., Int. Ed. 2001, 40, 20522055.
(10) (a) Under strictly anaerobic and anhydrous conditions, a benzene solution $(50 \mathrm{~mL})$ of $2,6-\mathrm{Dipp}_{2}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SnCl}(1.10 \mathrm{~g}, 2 \mathrm{mmol}$, prepared by a method identical to that used for (2,6-Dipp $\left.2-\mathrm{H}_{3} \mathrm{C}_{6}\right) \mathrm{SnI}^{10 \mathrm{~b}}$ from $\mathrm{LiC}_{6} \mathrm{H}_{3}-2,6$-Dipp ${ }^{10 \mathrm{c}}$ and SnCl_{2}), was added dropwise to finely divided potassium (0.086 g , 2.2 mmol) in 10 mL of benzene at room temperature. The reaction mixture was stirred for 2 days after which the precipitate was allowed to settle for 4 h . The intensely dark blue-green solution was decanted from the precipitated solid. The volume of the solution was reduced to incipient crystallization and stored in a ca. $6^{\circ} \mathrm{C}$ refrigerator to give the product $\mathbf{1}$ as dark blue-green crystals. Yield: $0.31 \mathrm{~g}, 0.30 \mathrm{mmol}, 32.2 \% ; \mathrm{mp}$ dec $208-210^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{74} \mathrm{Sn}_{2}$, $\mathbf{1}$: C 70.31, H 7.22 . Found: C 71.02, H 7.54. UV-vis (hexanes) $\lambda_{\max } \in\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right) 410 \mathrm{~nm}, 4300$; $597 \mathrm{~nm}, 1700 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 399.77 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right) \delta 1.13\left(\mathrm{~d}, 24 \mathrm{H},{ }^{3} \mathrm{~J}\right.$ $\left.=6.0 \mathrm{~Hz}, o-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.39\left(\mathrm{~d}, 24 \mathrm{H},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}, o-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.87$ (sept, $\left.8 \mathrm{H},{ }^{3} J=6.0 \mathrm{~Hz}, o-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.22\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right)$, $7.05\left(\mathrm{~d}, 8 \mathrm{H},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, m\right.$-Dipp), $7.19\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz}, p\right.$-Dipp), $7.51\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100.53 \mathrm{MHz}\right.$, $\left.25^{\circ} \mathrm{C}\right) \delta 27.44\left(o-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.67\left(o-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 34.98\left(o-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $124.55\left(p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 125.94$ (m-Dipp), $130.65\left(m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 131.68$ (i-Dipp), 141.72 (p-Dipp), 150.84 (o-Dipp), $153.98\left(i-\mathrm{C}_{6} \mathrm{H}_{3}\right), 159.02\left(o-\mathrm{C}_{6} \mathrm{H}_{3}\right)$. ${ }^{119} \mathrm{Sn}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 149.00 \mathrm{MHz}, 25^{\circ} \mathrm{C}$) δ no signal observed. (b) Pu, L.; Olmstead, M. M.; Power, P. P.; Schiemenz, B. Organometallics 1998, 17, 5602-5606. (c) Schiemenz, B.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 2150-2152.
(11) Eichler, B. E.; Phillips, B. L.; Power, P. P.; Augustine, M. P. Inorg. Chem. 2000, 39, 3444-5449.
(12) (a) Crystal data for $\mathbf{1}$ at 90 K with $\mathrm{Mo} \mathrm{K} \alpha(\lambda=0.71073 \AA$) radiation: a $=$ 20.4324(11) $\AA, b=15.7584(9) \AA, c=16.2418(9) \AA$, orthorhombic, space group Pccn, $Z=4, \mathrm{R} 1=0.0317$ for $4127(I>2 \sigma(I))$ data, wR2 $=0.0845$ for all (7028) data. (b) Cyclic voltammetric data for 1 were obtained under anaerobic conditions using a PAR model 263 potentiostat/ galvanostat with a Pt working electrode (against a SCE reference) scanning at $100 \mathrm{mV} \mathrm{sec}{ }^{-1}$ in THF solution with $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right] \mathrm{PF}_{6}$ as the electrolyte.
(13) This result suggests that a tin-tin single bond in this compound class is ca. $2.9 \AA$ and is the distance to which the bond lengths in Table 1 should be compared. The $\mathrm{Sn}-\mathrm{Sn}$ distance of 2.8909(2) \AA in $\mathrm{Ar}^{*}(\mathrm{Me})_{2} \mathrm{SnSnAr}^{* 11}$ supports this argument.
(14) Takagi, N.; Schmidt, M. W.; Nagase, S. Organometallics 2001, 20, 16461651.
(15) Su, J.; Li, X.-W.; Crittendon, C.; Robinson, G. H. J. Am. Chem. Soc. 1997, 119, 5471-5472.
(16) Eichler, B. E.; Power, P. P. Inorg. Chem. 2000, 39, 5450-5453.
(17) $\mathrm{Sn}-\mathrm{Sn}$ distances as short as 2.479 (4) \AA have been reported in $\mathrm{Sn}(\mathrm{IV})-$ Sn(II) compounds. See: Nardelli, M.; Pelizzi, C.; Pelizzi, G.; Tarasconi, P. Z. Anorg. Allg. Chem. 1977, 431, 250-260.
(18) Wiberg, N.; Lerner, H.-W.; Vasisht, S.-K.; Wagner, S.; Karaghiosoff, K.; Nöth, H.; Ponikwar, W. Eur. J. Inorg. Chem. 1999, 1211-1218.
(19) Goldberg, D. E.; Hitchcock, P. B.; Lappert, M. F.; Thomas, K. M.; Fjelberg, T.; Haaland, A.; Schilling, B. E. R. J. Chem. Soc., Dalton Trans. 1986, 2387-2394.

JA0257164

[^0]: * To whom correspondence should be addressed. E-mail: pppower@ucdavis.edu.

