

Synthesis and Characterization of 2,6-Dipp₂-H₃C₆SnSnC₆H₃-2,6-Dipp₂ (Dipp = C_6H_3 -2,6-Prⁱ₂): A Tin Analogue of an Alkyne

Andrew D. Phillips, Robert J. Wright, Marilyn M. Olmstead, and Philip P. Power*

Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616

Received January 25, 2002

In 1997 it was reported that reduction of the aryltin(II) halide $Sn(Cl)C_6H_3$ -2,6-Trip₂ (Trip = C_6H_2 -2,4,6-Prⁱ₃) by potassium afforded singly reduced valence isomers of distannynes in accordance with eq 1.¹

$$2:Sn(Cl)Ar^* \xrightarrow{K} [K(THF)_6][Ar^*SnSnAr^*]$$
or
(1)

 $[K(18-crown-6)(THF)_2][Ar*SnSnAr*] \cdot 2THF + 2KCl$ Ar* = C₆H₃-2,6-Trip₂

Subsequently, it was shown that it was possible to induce further reduction by reaction with alkali metal for extended periods to obtain the doubly reduced species $K_2Ar^*SnSnAr^*$ as well as its germanium analogue $Na_2Ar^*GeGeAr^{*.2}$ The main structural features of the singly and doubly reduced tin products¹⁻³ are a strongly trans-bent, planar skeleton and tin—tin bonds that are equal to, or slightly shorter than, the tin—tin distance (2.80 Å) in gray tin⁴ or the 2.824 Å calculated for the Sn—Sn single bond in H₃SnSnH₃.⁵ Due to the relatively narrow Sn—Sn—C angles in these compounds (See Table 1.),¹⁻³ they were viewed as singly (IV) or doubly (V) reduced forms of III which is a singly bonded valence isomer of

the hypothetical triply bonded distannyne I. The double bonding in the twice reduced V is supported by analogy with the isoelectronic neutral group 15 species RSb=SbR.6,7 Furthermore, EPR spectral data for IV supported the location of the unpaired electron spin density in a π -orbital which results from the overlap of a 5p orbital from each tin. The multiple Sn-Sn bonds in IV and V are not particularly short in comparison to a conventional Sn-Sn single bond,^{4,5} but it could be argued that the multiple Sn–Sn bonding is partly masked by lengthening of the σ -bond which could have been weakened by the high p-character of the σ -bonding orbitals, and by Coulombic repulsion in the case of the dianion V. It is probable that IV and V are obtained through the reduction of neutral Ar*SnSnAr*; however, the structure and the degree of multiple bonding in this species has remained undefined experimentally. Such a molecule is of key importance in heavier group 14 element chemistry, where the only precedent is the compound Ar*PbPbAr*,8 which has a long lead-lead bond of 3.188(1) Å and a Pb-Pb-C angle of 94.26(4)° consistent with metal-metal single bonding.^{8,9} It is now reported that the use of a modified terphenyl substituent

* To whom correspondence should be addressed. E-mail: pppower@ucdavis.edu.

Table 1.	Selected Bond	Distances	and Angles	for Reduced
Ar*SnSn/	Ar* Species and	1	•	

cmpd	Sn–Sn(Å)	Sn–Sn–C (deg)	ref
[K(THF) ₆][Ar*SnSnAr*] ^a	2.8123(9)	95.20(13)	1
[K(18-crown-6)(THF)2][Ar*SnSnAr*]	2.7821(14)	93.6(4),95.0(4)	1
	2.8236(14)	97.3(2)	
[(THF) ₃ Na{Ar*SnSnAr*}]	2.8107(13)	97.9(3),98.0(4)	3
[K ₂ Ar*SnSnAr*]	2.7763(9)	107.50(14)	2
Ar'SnSnAr' (1) ^b	2.6675(4)	125.24(7)	this work

^{*a*} Ar^{*} = C₆H₃-2,6-Trip₂. ^{*b*} Ar' = C₆H₃-2,6-Dipp₂.

permits the synthesis and structure of a neutral diorganoditin species of formula Ar'SnSnAr' (1; Ar' = C_6H_3 -2,6-Dipp₂; Dipp = C_6H_3 -2,6-Prⁱ₂), whose structural parameters support the presence of tin—tin multiple bonding.

The compound 1 was isolated by reaction of Sn(Cl)Ar' with a stoichiometric quantity of potassium in benzene at room temperature.10 The product was obtained as dark blue-green crystals which were spectroscopically and structurally characterized. The ¹H and ¹³C NMR data were consistent with the presence of the Ar' ligand. However, despite numerous attempts, a ¹¹⁹Sn NMR signal could not be detected. It is probable that the signal is broadened to a sufficient extent to be undetectable directly owing to the large chemical shift anisotropies caused by the tin environment.¹¹ The UV-vis spectrum affords two moderately intense absorptions at 410 and 597 nm which may be due to $\pi \rightarrow \pi^*$ and $n - \pi^*$ transitions. An X-ray structure determination revealed a centrosymmetric molecule (Figure 1) that has trans-bent skeleton, as well as a planar C(1)Sn(1)Sn(1A)C(1A) array as required by symmetry.¹² The Sn-Sn distance is 2.6675(4) Å, and the Sn(1)-Sn(1A)-C(1A) angle is 125.24(7)°. The central aryl ring of the ligand is almost coplanar (torsion angle 3.2°) with the C(1)Sn(1)Sn(1A)C(1A) array. Furthermore, there is an angle of 4.9° between the Sn(1)-C(1) bond and the C(1)···C(4) vector. The flanking aryl rings are oriented at 82.8° with respect to the central aryl ring. A cyclic voltammogram of 1 in THF solution displayed a quasi-reversible reduction at ca. -1.22 V vs SCE.^{12b} An irreversible oxidation was observed at ca. 0.0 V.

The compound **1** is a stable ditin analogue of an alkyne. The Sn-Sn distance is shorter, and the Sn-Sn-C angle is considerably wider, than those observed for the reduced compounds in Table 1. The Sn-Sn distance is shortened in comparison to that of a normal single bond^{4,5} and close to the 2.659 Å calculated for the hypothetical compound TbtSnSnTbt (Tbt = C_6H_2 -2,4,6-{CH-(SiMe_3)_2}_3) which has a Sn-Sn-C angle of 122° and a torsion angle of 10.7° between the C-Sn-Sn planes.⁵ Interestingly, calculations for the structurally uncharacterized compound Ar*SnSnAr* also yield a trans-bent structure (Sn-Sn-C = 111.0°).⁵ However, the torsion angle of 2.900 Å.^{5,13} The calculated structure of Ar*SnSnAr* and the experimentally determined

Figure 1. Selected bond lengths (Å) and angles (deg) for **1**. H atoms are not shown. Sn(1)-Sn(1A) = 2.6675(4), Sn(1)-C(1) = 2.191(3), C(1)-C(2) = 1.403(4), C(1)-C(6) = 1.405(4), Sn(1A)-Sn(1)-C(1) = 125.24(7), Sn(1)-C(1)-C(2) = 124.9(2), Sn(1)-C(1)-C(6) = 115.8(2), C(1)-C(2)-C(19) = 119.8(2), C(1)-C(6)-C(7) = 118.6(2), C(2)-C(1)-C(6) = 119.3(3).

structure of 1, which differ only in the presence or absence of p-Prⁱ groups on the flanking rings, illustrate the importance of these groups to the stability of the two configurations. It is becoming clear that the *p*-Prⁱ groups play a key role in determining the overall structure of these compounds as well as other terphenyl derivatives. Previous calculations¹⁴ have shown that they are important in stabilizing the controversial compound Na2Ar*GaGaAr*.15 In addition, the structures of the lithium derivatives of these ligands, C₆H₆•LiC₆H₃-2,6-Trip₂ (i.e., C₆H₆•LiAr*) and (LiC₆H₃-2,6-Dipp₂)₂ (i.e., $(LiAr')_2$), show that the absence of the *p*-Prⁱ groups decreases steric congestion sufficiently to allow dimerization to occur.^{10c} The Sn-C(1) distance, 2.191(3) Å in 1, is marginally shorter than the divalent tin carbon distance (2.227(2) Å) in Ar*(Me)₂SnSnAr*.¹⁶ This, together with the near coplanarity of the central aryl ring and the C(1)-Sn(1)-Sn(1A) array, suggests the possibility of conjugation. However, the different C-Sn-Sn angles at tin, which may indicate changes in σ -bonding, makes it difficult to draw conclusions from the structural data.

Although the hypothetical species Ar*SnSnAr* and TbtSnSnTbt have been described as distannynes,⁵ this name is misleading in respect of the bond order. The Sn–Sn distances calculated for TbtSnSnTbt, and observed in **1**, are clearly shorter than single bonds, but they are not as short¹⁷ as the Sn–Sn double bond

(2.59(1) Å) in the cyclotristannene $(Bu_3^tSi)_2SnSn(SiBu_3^t)Sn(SiBu_3^t)$ where, possibly, the geometric constraints of the three-membered ring favor alignment of the tin p-orbitals to afford more efficient π -overlap.¹⁸ They are similar to the Sn–Sn multiple bonds in the tristannaallene Sn{Sn(SiBu_3)_2}_2 (Sn–Sn = 2.68(1) Å)¹⁷ and ca. 0.1 Å shorter than the Sn–Sn distance 2.768(1) Å in the compound R₂SnSnR₂ (R = CH(SiMe_3)₂) which is the shortest, currently known Sn–Sn bond in a "distannene".¹⁹ Furthermore, the trans-bent geometry is indicative of lone pair character at each tin. The bonding in **1** thus approximates to II and lies between the extremes of the hypothetical linear triply bonded I and the singly bonded III.

Acknowledgment. We are grateful to the National Science Foundation (CHE-0094913) for generous financial support. The

Bruker SMART 1000 diffractometer was funded in part by NSF Instrumentation Grant CHE-9808259. We thank Professor Frank Osterloh for his essential help in recording the electrochemical data.

Supporting Information Available: Tables of data collection parameters, atom coordinates, bond distances, angles, anisotropic thermal parameters, and hydrogen coordinates (PDF). An X-ray crystallographic file (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Olmstead, M. M.; Simons, R. S.; Power, P. P. J. Am. Chem. Soc. 1997, 119, 11705–11706.
- (2) Pu, L.; Senge, M. O.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1998, 120, 12682–12683.
- (3) Pu, L.; Haubrich, S. T.; Power, P. P. J. Organomet. Chem. 1999, 582, 100.
- (4) Wells, A. F. Structural Inorganic Chemistry, 5th ed.; Clarendon: Oxford, 1984; p 1279.
- (5) Takagi, N.; Nagase, S. Organometallics 2001, 20, 5498-5500.
- (6) Tokitoh, N.; Arai, Y.; Sasamori, T.; Okazaki, R.; Nagase, S.; Uekusa, H.; Oshashi, Y. J. Am. Chem. Soc. 1998, 120, 433–434.
- (7) Twamley, B.; Sofield, C. D.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1999, 121, 3357–3367.
- (8) Pu, L.; Twamley, B.; Power, P. P. J. Am. Chem. Soc. 2000, 122, 3524.
- (9) The structure of Ar*PbPbAr*⁸ and calculations on a model species indicate that the Pb-Pb bonding is single. See: Chen, Y.; Hartmann, M.; Diedenhofen, M.; Frenking, G. Angew. Chem., Int. Ed. 2001, 40, 2052– 2055.
- (10) (a) Under strictly anaerobic and anhydrous conditions, a benzene solution (50 mL) of 2,6-Dipp₂-C₆H₃SnCl (1.10 g, 2 mmol, prepared by a method identical to that used for (2,6-Dipp₂-H₃C₆)SnI¹⁰⁶ from LiC₆H₃-2,6-Dipp₂^{10c} and SnCl₂), was added dropwise to finely divided potassium (0.086 g, 2.2 mmol) in 10 mL of benzene at room temperature. The reaction mixture was stirred for 2 days after which the precipitate was allowed to settle for 4 h. The intensely dark blue-green solution was decated from the precipitated solid. The volume of the solution was reduced to incipient crystallization and stored in a ca. 6 °C refrigerator to give the product 1 as dark blue-green crystals. Yield: 0.31 g, 0.30 mmol, 32.2%; mp dec 208 − 210 °C. Anal. Calcd for C₆₀H₇₄Sn₂, 1: C 70.31, H 7.22. Found: C 71.02, H 7.54. UV−vis (hexanes) λ_{max} ∈ (L mol⁻¹ cm⁻¹) 410 nm, 4300; 597 nm, 1700. ¹H NMR (C₆D₆, 399.77 MHz, 25 °C) δ 1.13 (d, 24 H, ³J = 6.0 Hz, *o*-CH(CH₃)₂), 6.22 (t, 2 H, ³J = 7.2 Hz, *p*-C₆H₃), 7.05 (d, 8 H, ³J = 7.2 Hz, *m*-Dipp), 7.19 (t, 4 H, ³J = 7.2 Hz, *p*-C₆H₃), 7.51 (d, 4 H, ³J = 7.2 Hz, *m*-C₆H₃), ¹³C {¹H} NMR (C₆D₆, 100.53 MHz, 25 °C) δ 27.44 (*o*-CH(CH₃)₂), 3.267 (*o*-CH(CH₃)₂), 3.498 (*o*-CH(CH₃)₂), 2.87 (*o*-CH(CH₃)₂), 13.508 (*i*-C₆H₃), 131.68 (*i*-Dipp), 141.72 (*p*-Dipp), 150.84 (*o*-Dipp), 153.98 (*i*-C₆H₃), 131.68 (*i*-Dipp), 141.72 (*p*-Dipp), 150.84 (*o*-Dipp), 153.98 (*i*-C₆H₃), 159.02 (*o*-C₆H₃). ¹¹⁹Sn NMR (C₆D₆, 149.00 MHz, 25 °C) δ no signal observed. (b) Pu, L.; Olmstead, M. M.; Power, P. P.; Schiemenz, B. *Organometallics* 1998, 17, 5602 5606. (c) Schiemenz, B.; Power, P. P. *Angew. Chem., Int. Ed. Engl.* 1996, 35, 2150–2152.
- (11) Eichler, B. E.; Phillips, B. L.; Power, P. P.; Augustine, M. P. *Inorg. Chem.* **2000**, *39*, 3444–5449.
- (12) (a) Crystal data for 1 at 90 K with Mo Kα (λ = 0.71073 Å) radiation: a = 20.4324(11) Å, b = 15.7584(9) Å, c = 16.2418(9) Å, orthorhombic, space group *Pccn*, Z = 4, R1 = 0.0317 for 4127 (I > 2σ(I)) data, wR2 = 0.0845 for all (7028) data. (b) Cyclic voltammetric data for 1 were obtained under anaerobic conditions using a PAR model 263 potentiostat/galvanostat with a Pt working electrode (against a SCE reference) scanning at 100 mV sec⁻¹ in THF solution with 0.1 M [NBu₄]PF₆ as the electrolyte.
- (13) This result suggests that a tin-tin single bond in this compound class is ca. 2.9 Å and is the distance to which the bond lengths in Table 1 should be compared. The Sn-Sn distance of 2.8909(2) Å in Ar*(Me)₂SnSnAr*¹¹ supports this argument.
- (14) Takagi, N.; Schmidt, M. W.; Nagase, S. Organometallics 2001, 20, 1646– 1651.
- (15) Su, J.; Li, X.-W.; Crittendon, C.; Robinson, G. H. J. Am. Chem. Soc. 1997, 119, 5471–5472.
- (16) Eichler, B. E.; Power, P. P. Inorg. Chem. 2000, 39, 5450-5453.
- (17) Sn-Sn distances as short as 2.479(4) Å have been reported in Sn(IV)-Sn(II) compounds. See: Nardelli, M.; Pelizzi, C.; Pelizzi, G.; Tarasconi, P. Z. Anorg. Allg. Chem. 1977, 431, 250-260.
- (18) Wiberg, N.; Lerner, H.-W.; Vasisht, S.-K.; Wagner, S.; Karaghiosoff, K.; Nöth, H.; Ponikwar, W. Eur. J. Inorg. Chem. 1999, 1211–1218.
- (19) Goldberg, D. E.; Hitchcock, P. B.; Lappert, M. F.; Thomas, K. M.; Fjelberg, T.; Haaland, A.; Schilling, B. E. R. J. Chem. Soc., Dalton Trans. 1986, 2387–2394.

JA0257164